Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. These interesting properties have put extracellular vesicles into the focus of many recent studies. Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing Olmesartan issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the Mouse Monoclonal to MBP tag trafficking of extracellular vesicles are discussed. and whether it is restricted to certain cell types, physiological conditions or diseases or whether it is a ubiquitous way of cell-to-cell communication. For Williams et al. [29] Olmesartan the concentration of miRNAs in biological fluids is significantly lower than in the surrounding cells and might Olmesartan be below the threshold for triggering any significant function lipogenesis have already been described for several cancers [33C35]. Recently, Marien and colleagues identified a distinct lipid signature in non-small cell lung cancer. By using a mass spectrometry-based phospho-lipidomics approach, the authors identified 91 phospholipid species differentially expressed in cancer versus normal tissues [36]. The distinct lipid composition of EVs coupled with the capability of EVs to travel in biological fluids, puts lipid profiling on the list for novel biomarker discovery. Interestingly, an enrichment in certain lipid species in the membrane of EVs has been reported in several publications. In this context, Llorente et al. [37] observed a specific sorting of lipids into EVs compared to the secreting cells. Lipid composition analysis of metastatic prostate cancer cells and corresponding EVs revealed an enrichment in glycosphingolipids, cholesterol, sphingomyelin and phosphatidylserine in EVs compared to parental cells. However, the authors did not compare the lipid composition of these EVs to those released from normal prostate cells. The enrichment of specific lipids within the membrane of EVs has also been described in colorectal cancer cells [38]. Furthermore, Schlaepfer and colleagues observed that hypoxia triggered triglyceride accumulation in prostate cancer cells and corresponding EVs due to the activation of lipogenesis-related enzymes [39]. Overall, lipidomics of EVs has gained attention in recent years but to this day, it remains controversial which lipids are involved in EV-mediated cell-to-cell communication [40], also because it is a challenge to produce pure EV preparations and to avoid cellular lipoparticle contaminations, potentially leading to misinterpretations. Nevertheless, standardised and well-controlled lipid profiling of EV membranes might be useful for the identification of new biomarkers and for a better understanding of the biology of EV secretion. Visualisation of EVs and EV traffic The most common methods used to detect and characterise EVs are electron microscopy (EM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), fluorescence microscopy and flow cytometry (FCM). Two standard methods are used to assess the quality of the EV preparation: EM and either DLS or NTA. EM has the advantage that it provides the highest resolution compared to the other methods. In addition, EM combined with immuno-gold labeling allows for recognition of protein markers on the surface of EVs. DLS and NTA both measure the size of particles using Brownian Olmesartan molecular movement but NTA has, additionally, a camera documenting the movement and light scattering of the samples [41]. Unlike previous methods, which only enable physical characterisation of EVs in fixed samples, fluorescence microscopy visualises labelled EVs in live cell conditions/assays. Several fluorescent membrane dyes are used to label purified EVs such as the PKH-67 (green) or PKH-26 (red) linker dyes. One disadvantage of the labelling dyes is their long half-life.